TATA MOTORS Connecting Aspirations

CII- National Award for Excellence in Energy Management 2024

Tata Motors - Lucknow Plant

Gaurav Bansal

Nadeem Ahmed

Dinesh Kumar

DGM (CPED-Utilities) Sr. Manager (Paint Shop-Maint.) Executive (CPED-Mech Maint.)

TATA MOTORS
Slides Slides
4-7
9-11
13-20
22-27
29-34
36-37
39-41
43

Index

dex	TATA MOTORS
Contents	Slides
1. INTRODUCTION & ENERGY POLICY	4-7
BRIEF INTRODUCTION-TATA MOTORS, ENERGY POLICY, ENERGY MANAGEMENT STRUCTURE	
2. ENERGY DATA & BENCHMARKING SPECIFIC ENERGY CONSUMPTION DATA, INTERNAL AND NATIONAL BENCHMARKING	9-11
3. ENCON PROJECTS ENERGY CONSERVATION PROJECTS	13-20
4. INNOVATIVE PROJECTS- INNOVATIVE PROJECTS-PAINT SHOP AND BIW	22-27
5. RENEWABLE ENERGY, GHG EMISSIONS & NET ZERO NET ZERO, RE100 INTRODUCTION- 6 MW, SOLAR PLANTS, GHG, CIRCULARITY	29-34
6. GREEN SUPPLY CHAIN GREEN PURCHASE POLICY, GREEN SUPPLY CHAIN ACTIVITIES	36-37
7. WASTE UTILIZATION MANAGEMENT WASTE MANAGEMENT & WATER MANAGEMENT	39-41

8. AWARDS & ACHIEVEMENTS

Tata Motors Limited- Commercial Vehicles: Introduction

TATA MOTORS

Tata Motors, Lucknow Plant provides complete Mobility solutions for Commercial Vehicles & Buses

Planned from Lucknow 4

Tata Motors have committed to achieve UNDP's Sustainable Development Goals -Impacts SDG's 6,7,13,14,15

ISO 14001 : 2015

Date: September 27, 2018

Place: Mumbai

Q

warter Butscheit

ISO 45001 : 2018

STATIBUT

ISO 50001:2018

SO 50001:20

March 18, 2015

Place: Mumbel

O 182 CHATTER TRUCK In the second second en ? - ---all the second to

100

the de Rabelah

CII Water Positive (Nov'22)

IATF 16949 : 2016

Certifications:

Tata Motors Limited-Lucknow Plant Layout

TATA MOTORS Connecting Aspirations

TATA MOTORS

Connecting Aspirations

Assembly Lines are flexible to manufacture any model with minimum changes – ILCV, Buses , HCV.

dex	TATA MOTORS
Contents	Slides Connecting Aspirations
1. INTRODUCTION & ENERGY POLICY	4-7
BRIEF INTRODUCTION-TATA MOTORS, ENERGY POLICY, ENERGY MANAGEMENT STRUCTURE	
2. ENERGY DATA & BENCHMARKING SPECIFIC ENERGY CONSUMPTION DATA, INTERNAL AND NATIONAL BENCHMARKING	9-11
3. ENCON PROJECTS ENERGY CONSERVATION PROJECTS	13-20
4. INNOVATIVE PROJECTS	22-27
INNOVATIVE PROJECTS-PAINT SHOP AND BIW	
5. RENEWABLE ENERGY, GHG EMISSIONS & NET ZERO NET ZERO, RE100 INTRODUCTION- 6 MW, SOLAR PLANTS, GHG, CIRCULARITY	29-34
6. GREEN SUPPLY CHAIN	36-37
GREEN PURCHASE POLICY, GREEN SUPPLY CHAIN ACTIVITIES	
7. WASTE UTILIZATION MANAGEMENT	39-41
WASTE MANAGEMENT & WATER MANAGEMENT	
8. AWARDS & ACHIEVEMENTS	43

Energy-Overall and Specific Consumption

TATA MOTORS

YOY Specific Energy Consumption reduced by 8% during last 3 years, even though Production No's increased by 49%

Information on Competitors, National & Global Benchmark

TATA MOTORS Connecting Aspirations

Internal and External Benchmarking: Tata Motors CV Plants

All Tata Motors CV Plant's share data amongst each other for Internal Benchmarking & Learning & Sharing

Specific Electrical Energy: TML-Lko has the Best Improvement wrt FY 2022-23

Specific Thermal Energy:

TML-Lko has the 2nd Best Improvement wrt FY 2022-23

Paint Shop Process Benchmarking: TML-Lko has the Best Improvement wrt FY 2022-23

There are no Standard data available for National and Global benchmarks

Internal Process Benchmarking for Paint Shop

Roadmap for Achieving Long Term Target of Energy Consumption

TATA MOTORS

Connection Aspirations 5 year Target plan: Electrical: 17% reduction Thermal: 24% reduction

chemical/Solar Thermal /Waste Heat Recovery

application

AC, etc.

Index

dex	TATA MOTORS
Contents	Slides
1. INTRODUCTION & ENERGY POLICY	4-7
BRIEF INTRODUCTION-TATA MOTORS, ENERGY POLICY, ENERGY MANAGEMENT STRUCTURE	
2. ENERGY DATA & BENCHMARKING SPECIFIC ENERGY CONSUMPTION DATA, INTERNAL AND NATIONAL BENCHMARKING	9-11
3. ENCON PROJECTS ENERGY CONSERVATION PROJECTS	13-20
4. INNOVATIVE PROJECTS	22-27
INNOVATIVE PROJECTS-PAINT SHOP AND BIW	
5. RENEWABLE ENERGY, GHG EMISSIONS & NET ZERO NET ZERO, RE100 INTRODUCTION- 6 MW, SOLAR PLANTS, GHG, CIRCULARITY	29-34
	0/ 07
6. GREEN SUPPLY CHAIN GREEN PURCHASE POLICY, GREEN SUPPLY CHAIN ACTIVITIES	30-3/
7. WASTE UTILIZATION MANAGEMENT WASTE MANAGEMENT & WATER MANAGEMENT	39-41
8. AWARDS & ACHIEVEMENTS	43

Energy and Cost Reduction Projects FY 2024-25 (ERASE Methodology)

TATA MOTORS

Connecting Aspirations

Year	Idea Description	Control Type (ERASE)	Annual Electrical Saving (Million kWh)	Annual Electrical Cost Saving (Rs million)	Annual Thermal Saving (kcal)	Annual Thermal Cost Saving (Rs million)	Total Annual Savings (Rs million)	Investment Made (Rs million)	ROI (Yrs)
2024-25	Wet on Wet Sealer implementation at LKO Paint Shop	E	0	0	756.96	4	4	2	0.5
2024-25	ED 250 Implementation	A	0.3	2.4	0	0	2.4	0	0
2024-25	Staggered Shop running to utilize the Solar Energy on Non working /day	Eff	0.1	0.8	0	0	0.8	1	1.2
2024-25	Solar Plant installation 1.5 MWp	A	2.8	4.2	0	0	4.2	0	0
2024-25	Reconditioning/ Replacement of low efficient chillers	Eff	0.3	2.4	0	0	2.4	0.5	0.2
2024-25	Phase Wise LED Light Replacement	A	0.25	2	0	0	2	0.5	0.2
2024-25	Power Purchase through Open Access	A	0	20	0	0	20	0	0

E	(\mathbf{R})	A	S	E
E- Eliminate 'Need'	R- Reduce Abs & Sp. Energy consumption	A- Alternative energy sources & Application innovation	S-Sizing of equipment	E-Efficiency improvements / Elimination of losses
 Do we really need this process for desirable outcome ? Do we need Energy input in this process for desired outcome? 	 How much is productive and non- productive energy? How can I reduce non-productive energy use? How can I improve throughput ? 	 Is there an alternative cost effective energy source available? What is my application advantage ? 	 What is the equipment capacity? What is the actual demand ? How can I right-size the equipment capacity? 	 Is there excessive Noise, Heat, Vibration, Radiation or leakage ? What is my equipment/process energy efficiency? What is the best efficiency point?

Total Expected Benefit:

39 kwh/Eq. Veh.

0.28 TCO2/Eq. Veh.

26,850 TCO2

Rs. 36 Million

Rs. 377/Eq. Veh

SAVINGS

NVESTMEN

EnCons Summary (FY 2021-2024)

TATA MOTORS

Connecting Aspirations

	Consur	nptions	Saving Thr	ough EnCons	Saving Thro	ough EnCons	Total Savings	Investments	ROI Period	Savings	
Year	Electrical	Electrical Thermal Electrical Thermal (Lacs KWH) (in MT)		Thermal (in MT)	Electrical Thermal		Rs in Cr.	Rs in Cr.	in Months	In kwh/Eq. Veh.	
	(KWh in Lacs)	(in MT)	(KWh in Lacs)	(in MT)	Rs in Cr.	Rs in Cr.					
2021-22	139.6	488	4.96	63.4	0.423 0.32		0.743	0.23	3.2	8.4	
2022-23	166.7	766	10.33	31.15	0.97	0.183	1.153	0.12	9.6	16.48	
2023-24	208.6	1060	23.74	9.00	2.05	0.054	2.1027	0.47	4.4	26.99	
Total	514.9	2314	39.03	103.55	3.44	0.557	3.99	0.82	1.48	51.88	

EnCons List

Year	ldea Descr	iption				Annual Electrical Saving (KWh)	Electric Savino	al Kwi	ual Electri LSaving (Re	cal Annual T S Quantify	hermal Saving	Annual Cost Sa	Thermal ving (Rs	Total Ann Savings (I	nual li Bs - D	nvestment Vlade (Rs	Payback (Months)					
							····-0	nii	01	Argund	VVIII	milion		nilin	I	nilion)	lus and				_	
2021-2022	11 KW pai	Year	Idea Des	cription		Annual Elec Saving (Lakhs kV	trical (Vh)	Annual El Cost Sa (Rs mil	ectrical wing lion)	Annual The Quar (M	rmal Saving ntity T)	Annu Savi	al Thermaing (Rs mil	l Cost lion)	Total	l Annual S (Rs million	iavings 1)	Inve: (F	stment Made Rs million)	Payback (Months		
	oumo con	2022-23	Degrease & Phosphate before winter in paint : Interlocking of upder p	tank dee; hop	cleaning	0		0		2500		0.18			0.18			0		0		
107 JUD	Untinen	2022-23	Line 1 Use of VFD for Pump A	pplication	on	6000		0.051						_	0.051			0 195		0	-	
ANT: ANT	uconikoj	2022-23	Hydraulic Press at axle Top coat booth balanc modification) at Paint :	shop ing(exhau shop	st.	84000		0.7							0.7			0		0		
	per requir	2022-23	Use of VFD for Pump. and washing m/c and BIW	Year		ldea Desci	ription		Annu	al Electrical Saving	Annual El Cost Sa	ectrical ving	Annua Sa	Thermal ving	1	Annual Th Saving (R	ermal Co s million	ost 1)	Total Annua (Rs milli	l Savings	Investment Made (Rs million)	Payb
2021-2022	Conversio	2022-23	Switching off water of extractors and line po production hours in B		Automat	tic switching a	of front	wall tube		kwh	(Rs mill	ion)	()	cal)		Secure (n	2 1111100	.,	(10 1111		(10 111101)	1.000
	work area	2022-23	Alternate day running	1	lights an BIW	d man cooler:	s with I	PLC logic at		48079	0.38	5		0			0		0.38	5	0	
2024-2022	Interlockie	2022-23	heaters of Hub washin Logic & editable throu	2	Energy s smoke e	aving by contr xtractor with	rolling PLC at	running of BIW	:	11544	0.09	2		0			0		0.09	2	0	
			shop Switching off no-load and sub-stations due 1	3	Conversi into LED	lights across	inventi the pla	onal lights int	5	i37363	4.29	9		0			0		4.298	9	2.06	5.3
		2022-23	Paint shop substation	4	impleme Booth hi	entation at LKI	O Paint O Paint	t Shop area, naint	1	166847	1.33	5		0			0		1.33	5	2	17.
107 JUD	ID Galaci	2022-23	gates in TCF shop Interlocking of Ideal N	5	shop Ton Coa	t-2 Rooth & A	SU Filt	ers	1	125000	1			0			0		1			0.0
ANT ANT	LED UŞILI	2022-23	heaters of shaft wash Logic & editable throu shop	6	replacen at paint	nent for bette shop	r Booti	h Balancing	:	20000	0.16	5		0			0		0.16			0.0
		2022-23	Installation of VFD for washing machine at R	7	Optimiza nomencl	ation of light u lature- 294 lig	usage b hts at 1	y TCF shop		49737	0.4)		0			0		0.40			0.0
		2022-23	cleaning in paint shop Replacement of tube	8	Load ma TCF shop	pping done fo p- 170 man co	or man olers n	coolers at educed	4	48800	3.5)		0			0		3.59			0.0
		2022-23	Sanding booth in Pain Energy saving in Offici running hour optimiza	9	Replacer (50 nos) Storage	ment of 400 W with 140 W L and Comp Ho	/ Highb .EDs E use	oay lamps V Battery	:	32500	0.26	5		0			D		0.26		0.6	27.
				10	Provision Air Line i an addit running day	n of ring syste in Western Co ional route ar hours by 14 h	m for 0 omplex nd redu rs per	Compressed - provided uced working	1	178500	1.42	8		0			D		1.42	3	0.6	5.0
				11	Provision FDV duri change c	n of Timer log ing lunch hour over time- run	ic to sv rs and : ning hi	vitch of the shift rs reduced	:	36000	0.28	8		0			D		0.28	3	0.015	0.6

	Major ENCON Projects
1	Control System (Timer Logics/ Occupancy Sensor/ Light Sensor etc.) for switching of man coolers and lights across the Plants
2	Reduction of ED Circulation pump operating frequency from 45Hz to 35Hz
3	Shut off valves for individual lines of Compressed Air Supply across shops and for main incoming Air Supply at BIW Shop
4	Timer based Air Supply and interlock for Front Wall Manipulator at BIW shop.
5	Provision of Ring System for Compressed Air Line in Western Complex.
6	New generation CED paint used in Paint Shop
7	Remote Shut down Valves for Compressed Air Supply for TCF Shop
8	Inverter Welding guns are being used in place of Thyristor based Welding machines

Total Cumulative Energy Saving in last 3 years is Rs. 4.0 Cr.

EnCons Projects-Compressed Air Pipe Line Ring System

TATA MOTORS

EnCons Projects-Double Loading of FES Cowl

TATA MOTORS

EnCons Projects

TATA MOTORS

• At present 60 no's of man cooler being control through 05 no's of VFD of equivalent rating in TCF Shop. Horizontal deployment in progress for reaming areas

17

Annual Saving -- 1.5 lacs KWH

EnCons Projects

TATA MOTORS

EnCons Projects

TATA MOTORS

Connecting Aspirations

Horizontal Deployment of Major Ideas-Across Shops

S.No	Idea Description	Paint Shop	TCF	Office Areas	Rest Areas	Status of Implementation as on 2024
1	Switching off no-load transformers in MRS and sub-stations.				✓	✓
2	Installation of LT Ring system for transformers of Paint shop-A, Paint shop- B & Paint Shop-C substations to eliminate iron losses of transformers.	√			v	✓
3	LED Lights in TCF R1/R2, DRR4 areas	\checkmark	\checkmark		✓	\checkmark
4	Use of portable compressor for fixed air demand wherever feasible.	✓	\checkmark	V	~	✓
5	Individual shut-off valves for Front wall, sub-structure and Mainframer lines in BIW.				~	✓
6	No water extraction on Non-working day results zero energy consumption of Pump house.	\checkmark	✓	\checkmark	~	\checkmark
7	Installation of LT Ring system for transformers of BIW Shop substation to eliminate iron losses of transformers.				~	\checkmark
8	Hourly energy report analysis and deriving corrective actions.	✓	✓	\checkmark	✓	\checkmark
9	Compressed air system optimization	✓	✓		✓	√
10	Installation of Shut off valves for isolate the pneumatic supply of particular area based on requirement.	✓	\checkmark	\checkmark	~	\checkmark
11	Bare minimum lighting in shops through low wattage Emergency Lighting system after working hours.	✓	\checkmark	\checkmark	~	\checkmark
12	Operation of R2 area in co-ordination with Line operation		\checkmark		✓	√

TATA MOTORS Connecting Aspirations

Various other initiatives creating major impact on energy consumption:

- Stringent Daily Monitoring of consumption shop wise
- Industry 4.0- Energy Dashboard with Power BI
- Digital transformation- Energy Dashboard with equipment wise monitoring in Paint Shop.
- Currently, horizontally deploying to all the shops.
- Trainings and awareness sessions on energy management for all employees.
- Activities during Energy Conservation Month Celebration.

dex	TATA MOTORS
Contents	Slides Connecting Aspirations
1. INTRODUCTION & ENERGY POLICY BRIEF INTRODUCTION-TATA MOTORS, ENERGY POLICY, ENERGY MANAGEMENT STRUCTURE	4-7
2. ENERGY DATA & BENCHMARKING SPECIFIC ENERGY CONSUMPTION DATA, INTERNAL AND NATIONAL BENCHMARKING	9-11
3. ENCON PROJECTS ENERGY CONSERVATION PROJECTS	13-20
4. INNOVATIVE PROJECTS	22-27
INNOVATIVE PROJECTS-PAINT SHOP AND BIW	
5. RENEWABLE ENERGY, GHG EMISSIONS & NET ZERO NET ZERO, RE100 INTRODUCTION- 6 MW, SOLAR PLANTS, GHG, CIRCULARITY	29-34
6. GREEN SUPPLY CHAIN GREEN PURCHASE POLICY, GREEN SUPPLY CHAIN ACTIVITIES	36-37
7. WASTE UTILIZATION MANAGEMENT WASTE MANAGEMENT & WATER MANAGEMENT	39-41

8. AWARDS & ACHIEVEMENTS

21

Project:

With close consultation with paint manufacturer, a new generation CED paint "KNP 250 T" has been implemented in electro deposition process for Cab & Cowl painting in Lucknow Plant. Earlier CED Paint "KNP LB40" was being used in electro deposition process .

Benefits :

CED	Paint Old Vs New Comparison				
S.N	KNP LB40 (Old)	KNP 250 T (New)	Benefits with new CED paint	Annual Saving (In KWH)	Benefit Category
1	CED bath need continuous circulation in working day as well as non working day	 CED bath need intermittent circulation during non working Days. Total 8-10 Hrs. circulation required 1 hrs. circulation / 6 Hrs. time duration 	14 Hrs of circulation pump running Hrs. reduced in each Non Working Days	162000	Energy Saving
2	Need to maintain temp range 25 - 30 Deg.	Need to maintain temp range 25 - 35 Deg.	Chiller load reduced due to increase in temp tolerance by 05 Deg.	4847	Energy Saving
3	Throw Power 22 cms	Throw Power 26 cms	Throw Power increased by 04 cms		Quality
4	Roughness Index - 0.5	Roughness Index - 0.2	Roughness Index improved by - 0.3		Quality
5	Desired coating strength is achieved at 20 micron DFT (Dry Film Thickness)	Desired coating strength is achieved at 16 micron DFT (Dry Film Thickness)	Required coating thickness reduced by 4 micron, in result paint consumption decreased by 8%		Cost Saving

<u>Annual savings :</u>

1.68 Lakhs KWH

121 ton CO2

Rs 22 Lakhs

TATA MOTORS Connecting Aspirations

Project:

Energy Saving by increasing the hourly production from 14 job to 20 job through efficiency improvement of PTED line. <u>Trigger:</u> Increase in demand per shift.

Action Plan for minimizing the misalignment of Job handling equipment's

Sr.Nos	Validated Causes	Possible Solutions	Aft
1		Install Guide way at PT Loading Station for C- Hanger	
2	Body seating issue on C-hanger which taking more time for seating adjustment	Install Autoadjusting Clamping unit of C-Hanger	
3		C-hangers Resting Pegs alignment as per drawing dimesnsions.	
4	Lift not transfering Body acuurately on C- hanger	install Cup type new resting on Lift's Fork	
5	Body trasfering from WBS hanger to Lift	WBS Hanger clamping units 4 nos	
6	Forks in 7mm-X & 9mm-Y offset positions	WBS Hanger Resting Pegs Alignment as per drawing dimensions.	

Conclusion: After taking above 6 actions total misalignment reduced under 10mm.

Guide plate installation for C hanger

TATA MOTORS

Auto adjusting lock for C hanger

C hanger resting pegs as per drawing dimensions

New cup type resting provided in Lifts

WBS hanger clamping in four arms

WBS hanger pegs alignment as per drawing dimensions

Manual intervention minimized, resulting in increase in hourly production

Annual savings :

370 ton **CO2**

Rs 43.5 Lakhs

Project: Design and line modifications done in BIW line to accommodate more production in the same time and using same energy

Present Condition:

- Two production lines in weld shop i.e.., Signa Cab & ILCV Cab.
- 57%(65 nos) of the shop volume was 1516 Signa Cab & 43%(50nos) was ILCV Cab.
- As per business requirement, New 1516 cowl model was to be produced.
- Being from 1516 family, New 1516 cowl can be produced on 1516 signa line with minimum investment.
- Daily requirement for New 1516 Cowl was 20 nos.

Total Time (min)	Administrative Breaks (min)	Net Available Time (min)	Customer Demand (nos)	Takt Time (min)	Remarks
(A)	(B)	(A-B)	, (,	()	
510	70	440	65	6.1	1516 Signa Cab
510	70	440	85	4.7	1516 Signa Cab & 1516 Cowl

Measures taken:

 Ladder Logic modification on Front wall, Substructure and main framer Auto clamping donea. Inversion system transfer PLC program modification for cycle time reduction)
 b. RPM increased from 400 RPM to 600 RPM as well as slow speed program modification
 c. Remote pendant provided for safety

- Logical modification done in Transporters.
- Modification done Robotic programs on Main framer and substructure robotic stations.
- Each station processes was improved using Standard Work Combination Chart & Spaghetti Chart to optimize Non value adding Activities.
- MF 50 gate operation PLC program modification (gate operation start when shuttle down at forward side cycle time saving 22 seconds

<u>Result:</u> 1st june23 achieved production target of 85 cabs per shift

Impact:

Average BIW Kwh/Eq. Veh- Before: 92.75 BIW Kwh/shop Eq. Veh. at 65 cab per shift

Average BIW Kwh/Eq. Veh- After: 90.91 BIW Kwh/shop Eq. Veh. at 85 cab per shift

Total Kwh/Eq. Veh. saved=1.84 kwh/Eq. Veh.*85(no. of cabs)= 156.4 Kwh Per shift

Way Forward:

To move towards 110 Cabs per shift and increase energy efficiency

SPAGHETTI CHART

sh Alger

3.510

TATA MOTORS Connecting Aspirations

dex	TATA MOTORS
Contents	Slides Connecting Aspirations
1. INTRODUCTION & ENERGY POLICY BRIEF INTRODUCTION-TATA MOTORS, ENERGY POLICY, ENERGY MANAGEMENT STRUCTURE	4-7
2. ENERGY DATA & BENCHMARKING SPECIFIC ENERGY CONSUMPTION DATA, INTERNAL AND NATIONAL BENCHMARKING	9-11
3. ENCON PROJECTS ENERGY CONSERVATION PROJECTS	13-20
4. INNOVATIVE PROJECTS	22-27
INNOVATIVE PROJECTS-PAINT SHOP AND BIW 5. RENEWABLE ENERGY, GHG EMISSIONS & NET ZERO NET ZERO, RE100 INTRODUCTION- 6 MW, SOLAR PLANTS, GHG, CIRCULARITY	29-34
6. GREEN SUPPLY CHAIN GREEN PURCHASE POLICY, GREEN SUPPLY CHAIN ACTIVITIES	36-37
7. WASTE UTILIZATION MANAGEMENT WASTE MANAGEMENT & WATER MANAGEMENT	39-41

8. AWARDS & ACHIEVEMENTS

TML– Net Zero Commitment

		Connecting Aspirations
DRIVING NET ZERO	PIONEERING CIRCULAR ECONOMIES	PRESERVING NATURE AND BIODIVERSITY
Targets taken up by Tata Group	THE TATA GROUP WILL BE A GLOBAL MODEL FOR BEST PRACTICE CIRCULARITY	THE TATA GROUP WILL STRIVE TO HAVE A POSITIVE IMPACT ON NATURE
 [2030]: [25%] reduction in absolute CO₂e emissions from [2020] baseline (Scope 1+2) from 2020 baseline, excluding Tata Steel India. Tata Steel India to reduce emissions intensity by 30% from 2020 baseline. [2045]: Net Zero emissions across the Group for Scope 1 and 2 all companies (and Scope 3 for JLR, TML, TCS TCPL) 	 [2023]: Launch Group model for Circular Economy [2025]: More than double the content of renewable or recycled resources in products by 2025 (from 2020). The Group will set revenue-based KPIs from 2025 onwards [2030]: Replenish fresh water used across Group operations in India and zero waste to landfill across Group companies [2040]: Tata Group will replenish more fresh water than it consumes. 	 [2024]: Action plan for net positive impact will be implemented across Tata Group companies [2025]: Invest in 10 NBS projects in India, which deliver biodiversity and community co-benefits. [2030]: Tata is an NBS leader and has supported development of a thriving NBS market in India.
 Targets taken up by TML - Lucknow ✓ [2026]: RE 100. ✓ [2035]: Net Zero Emissions across the Plant for Scope 1 and 2 	 [2023]: Water Positivity certification [2024]: Zero Waste to Land Fill certification 	 [2023]: Action plan for Net Positive Impact / Nature Based solution [2028]: Tata is an NBS leader and has supported development of a thriving NBS market in India

TATA MOTORS

TATA MOTORS

Connecting Aspirations

GHG Inventorization-Scope1 and Scope2

GHG Protocol-Categorizes the Direct and Indirect Emissions into 3 Parts: Scope1, Scope2 & Scope3

Connecting Aspirations Sources of Scope-1 & Scope-2 Emissions at Lucknow

TATA MOTORS

GHG Inventorization Tata Motors-Lucknow Plant include Scope1 & Scope2 Emissions

GHG Inventorization-Scope1 and Scope2

GHG Emission Trend FY23-24 (kg CO2/Eq. Veh)

TATA MOTORS

Connecting Aspirations

Savings

(kg CO2/Eq

Veh)

5

6.0

3.3

6.0

1.6

3

Savings

Status

SDCA

SDCA

SDCA

SDCA

SDCA

SDCA

38% Reduction (256 to 157.5 kgCO2/Eq. Veh.) in GHG over the last 4 years

Circular Economy (T A T V A)

Eliminate waste through Design

Designing our products to minimize use of virgin material, reduce waste and upcycle

Circulate products and materials

If we redesigned products so they could be reused or disassembled at the end of life, we could keep those products and their materials at their highest value at all times

3 Thinking in Systems

Many actors working together to create effective flows of materials and information, connections between people, places and ideas.

4) Use of Renewables

Work towards using energy from renewable sources to manufacture our products, running our processes and in logisitics

Waste

LIFETIME

(2)

UTILIZATION

TATA MOTORS Connecting Aspirations

Carbon Footprint - Scope 3- Circular Economy (T A T V A)

Levels for Circularity and Roadmap 5) 4 2 Levels of circularity 0 3 No Low Moderate High Full Net positivity circularity circularity circularity circularity circularity in system Past Today 2025 2030 2035 2040 Classic Product Aligned incentives Full circular value Silo optimization Ecosystem make-use-waste Improvement and and life-cycle chain in as-aand sales focus optimization better coordination mentality optimization service models Renewable energy Alternative Carbon-neutral use Carbon-neutral Full energy grid Carbon-Intensive In component drivetrains; Energy production and Integration of phase; low-carbon fuels production and low-carbon materials vehicles materials production assembly Full "at level" 50 Recycled content High-quality Production scrap Materials Linear value chain recycling and Upcycling of waste Increased recycling loops looping transparency Repair networks Modular design for Purpose-bullt Increased reman Second-life Lifetime Sales-driven model and used car upgradability and applications In aftermarket vehicles markets reman On-demand Fleets dominate: Mobility on demand Optimized mobility Private ownership Use Private ownership services (cities); vehicles and mobility and leasing In breathing fleets system subscriptions on demand

TATA MOTORS Connecting Aspirations

Extending the life of commercial vehicles

Aimed at commercial vehicles, Tata Prolife works towards :

Extending the life of vehicles and aggregates through systematic overhaul, leading to optimum performance.

Targets for Circularity

Pathway	KPI No.	КРІ	UOM	FY24-25 Targets	FY23-24	FY24-25 (YTD July'24)
	KPI E01	GHG Emissions from Operations	kgCO2e/eqveh)	136	157.49	148.3
Energy	KPI E02	% RE	%	46%	32.35	47.27
	KPI E03	Energy Intensity	GJ/Eq vehicle	1.48	1.48	1.63
	KPI U01	Utilization of Production Capacity (Chassis Line)	%	38%	37.32	37.85
Othization	KPI U02	OLE of output line (of the same Chassis Line)	%	65%	69.41	59.02
	KPI LO1	Increase in life of plant equipment	%	120%	121.8	127.13
Lifetime	KPI LO2	Circular Spares used	%	70%	78.48	52
	KPI LO3	Recovery type for EOL Rejections	%	100%	100	100
	KPI M01	Zero Waste to Landfill	%	100%	99.18	100
Materials	KPI M02	Material Circularity- IDM	%	2%	0	0
	KPI M03	Net Water Ratio	ratio	2.8	2.5	2.83 34

lex	TATA MOTORS
Contents	Slides Slides
1. INTRODUCTION & ENERGY POLICY BRIEF INTRODUCTION-TATA MOTORS, ENERGY POLICY, ENERGY MANAGEMENT STRUCTURE	4-7
2. ENERGY DATA & BENCHMARKING SPECIFIC ENERGY CONSUMPTION DATA, INTERNAL AND NATIONAL BENCHMARKING	9-11
3. ENCON PROJECTS ENERGY CONSERVATION PROJECTS	13-20
4. INNOVATIVE PROJECTS	22-27
INNOVATIVE PROJECTS-PAINT SHOP AND BIW	
5. RENEWABLE ENERGY, GHG EMISSIONS & NET ZERO NET ZERO, RE100 INTRODUCTION- 6 MW, SOLAR PLANTS, GHG, CIRCULARITY	29-34
6. GREEN SUPPLY CHAIN GREEN PURCHASE POLICY, GREEN SUPPLY CHAIN ACTIVITIES	36-37
7. WASTE UTILIZATION MANAGEMENT WASTE MANAGEMENT & WATER MANAGEMENT	39-41

8. AWARDS & ACHIEVEMENTS

35

TATA MOTORS Connecting Aspirations

Green Supply Chain Policies

PARETO ANALYSIS OF VEHICLE CRITICAL PARTS CONTRIBUTING TO POLYTHENE PACKAGING

Contribution of packaging include maximum part of plastic, wood and carton. By elimination or reuse of these material can save lot of energy. We had segregated the supplier in on basis of contribution of Parts

	•			
 Compilation of Single use plastic Packaging Disposal data Mapping the 	B/O Part Family wise Mapping of Packaging Condition Part Family Wise	Part Family wise Alternate Solution mapping for B/O, SPD, interplant transfer	Elimination of the Plastics packaging in the B/O Parts, Interplant transfers & in SPD. Elimination of the	Reduction in the Plastic Disposal waste Plastics Film free Packaging
Procurement data of the plastic	Packaging for interplant / SPD	Alternate Packaging development & Implementation	Purchase &	 Recycling of the 50 mic thk plastic
Packaging for interplant transfers & SPD	Plant Wise Data Analysis & Plastic Elimination Plan	Elimination of the plastics film in low	Logistics team Intervention Introduction of the	films Packaging standard for part family
Formation of the Plant wise CFT April	 Mapping of the Major Suppliers Involved Parts in finished vehicle Protected 	hanging Parts Ensuring the Use of 50 Micron thk plastics for 	Recyclable / Returnable packaging • Ensure compliance	 Sustenance thru dock audit Refurbishing check and standards for
the Plastic film Packaging • Packaging Critical Requirement manning	 with Plastic Films Idea Generation workshop for Plastic elimination 	unavoidable parts Adopting the benchmark best practices 	of the statuary requirement wherever unavoidable	the Returnable / recyclable packaging

Road Map For Polythene Elimination in SCM

Expansion Plan of Green Supply Chain through Transportation, Consolidation and Standardisation (TCS) Initiative

onsolidation

TCS is a cost reduction initiative to improve operational efficiency from below levers:

Transportation[T] - Optimisation of inbound transportation costConsolidation[C] - Consolidation of suppliers/part combinationsStandardisation[S] - Standardisation of parts/process

Initiative under Transportation aims to

- Optimize logistic cost
- Encourage supplier to establish set-up near TML locations, thereby saving logistic fuel consumption
- Reduction in packaging scrap through returnable packaging

Initiative under Consolidation aims to

- Build Strategic Supplier Base through consolidation of suppliers
- Reduce operational costs and improve efficiency & productivity through consolidation of parts such as higher assembly procurement & MASOP elimination

Initiative under Standardization aims to

- Reduce complexity and achieve modularity for quick response to the market
- Part Commonization across models (No VAVE) to enhance productivity
- Standardization of best process across plants

40HezipJepuey

Alansportation

Green Supply Chain Management

TATA MOTORS

Connecting Aspirations

Projects implemented i	n Supply Chain	for Eliminating I	Polythene, Wooden &	Cartons Packagi	ng		-	-
1. Project	Evaluation by	Benefits	2. Project	After	Benefits	3. Project	After	Benefits
Part Description : HEADLAMP & BLINKR MTG ASSY Vendor : LUMAX INDUSTRIES LTD, PUNE	Shadow board packaging accommodating more items in single box	2.36T of Annual Polythene waste generation eliminated	Primary Packing – carton package Secondary - paper / thermocol	Primary Packing – better PP box Secondary Packing – shadow board	3.5 T of Annual Polythene waste generation eliminated	Corrugated box packaging replaced with FLC boxes	Primary Packing – better PP box Secondary Packing – shadow board	Wooden carton eliminated
Before	After	r	Before		After	Before	, ,	After
4. Project	Evaluation	Benefits	5. Project	Evaluation	Benefits	6. Project	After	Benefits
Primary Packing - 1/ Polypack Secondary - Trolley	Primary Packing – better PP box Secondary Packing –	3.1 T of Annual Polythene waste generation	Primary Packing - 1/ Polybag Secondary - Corrugated	Packing – PP box, Inside- shadow	Annual Saving of 50 lacs	Corrugated box packaging replaced with returnable trolleys for	Primary Packing – Returnable	Corrugated box
Polythene weight :62 g	shadow board	eliminated	Box	boara packing		alternators.	frolleys	eliminarea
Polythene weight :62 g Before	shadow board	eliminated	Box Before	boara packing	After	alternators. Before	trolleys	After
Polythene weight :62 g Before	A shadow board	eliminated	Box Before		After	alternators. Before	frolleys	After

Saving: 4.5 kgCO2/Eq. Veh. For FY 23-24

lex	TATA MOTORS
Contents	Slides
1. INTRODUCTION & ENERGY POLICY BRIEF INTRODUCTION-TATA MOTORS, ENERGY POLICY, ENERGY MANAGEMENT STRUCTURE	4-7
2. ENERGY DATA & BENCHMARKING SPECIFIC ENERGY CONSUMPTION DATA, INTERNAL AND NATIONAL BENCHMARKING	9-11
3. ENCON PROJECTS ENERGY CONSERVATION PROJECTS	13-20
4. INNOVATIVE PROJECTS INNOVATIVE PROJECTS-PAINT SHOP AND BIW	22-27
5. RENEWABLE ENERGY, GHG EMISSIONS & NET ZERO NET ZERO, RE100 INTRODUCTION- 6 MW, SOLAR PLANTS, GHG, CIRCULARITY	29-34
6. GREEN SUPPLY CHAIN GREEN PURCHASE POLICY, GREEN SUPPLY CHAIN ACTIVITIES	36-37
7. WASTE UTILIZATION MANAGEMENT WASTE MANAGEMENT & WATER MANAGEMENT	39-41

8. AWARDS & ACHIEVEMENTS

38

Waste Utilization & Management

TATA MOTORS

LKO will go to ZWtL certification as per CII guideline by Yr 2024 end.

Waste Utilization & Management- Diversion Rate to ZWtL

100% Food Waste is now Converted to Rich Compost through Automatic Organic Waste Bio Composter

All the Hazardous Waste is already being diverted to Co-Processing

Sustainability-Circular Economy-Water Positive Plant

TATA MOTORS

Steps Taken to Achieve Positive Net Water Ratio

1. Elimination of Direct Water Supply to different areas Local Storage tanks provided at each shop floor's to eliminate the

need of continuous Direct Supply through Pump House

2. Intermediate Running of Pump House

Implemented intermediate running of Pump House for filling the Localized tanks

3. Underground Water Pipeline replacement

Phase-wise replacement of Underground Pipeline to above Ground to eliminate the losses due to leakages

4. STP-Utlra filtered Water for Gardening

After the installation of Tertiary Treatment Plan, UF Water is used for Gardening purpose & fresh water is saved

- 5. Online monitoring of Water Extraction through Bore well as well as Ground Table-Identification of Actionable Points
- 6. Shopwise Water consumption monitoring through DWM

Online Data Monitoring for Ground Water Extraction

1 & 2

Localized Storage Tanks

STP- UF Water through Tertiary plant

Eastern Complex-STP

Western Complex-STP

lex	TATA MOTORS
Contents	Slides
1. INTRODUCTION & ENERGY POLICY BRIEF INTRODUCTION-TATA MOTORS, ENERGY POLICY, ENERGY MANAGEMENT STRUCTURE	4-7
2. ENERGY DATA & BENCHMARKING SPECIFIC ENERGY CONSUMPTION DATA, INTERNAL AND NATIONAL BENCHMARKING	9-11
3. ENCON PROJECTS ENERGY CONSERVATION PROJECTS	13-20
4. INNOVATIVE PROJECTS INNOVATIVE PROJECTS-PAINT SHOP AND BIW	22-27
5. RENEWABLE ENERGY, GHG EMISSIONS & NET ZERO NET ZERO, RE100 INTRODUCTION- 6 MW, SOLAR PLANTS, GHG, CIRCULARITY	29-34
6. GREEN SUPPLY CHAIN GREEN PURCHASE POLICY, GREEN SUPPLY CHAIN ACTIVITIES	36-37
7. WASTE UTILIZATION MANAGEMENT WASTE MANAGEMENT & WATER MANAGEMENT	39-41

8. AWARDS & ACHIEVEMENTS

Awards & Achievements

TATA MOTORS Connecting Aspirations

Cll-National Award for Excellence in Energy Management

2023-Energy Efficient Unit Award
2021-Excellent Energy Efficient
Unit Award

2020-Energy Efficient Unit Award

- 2019-Energy Efficient Unit Award
- 2018-Energy Efficient Unit Award
- 2016-Excellent Energy Efficient

Unit Award

- 2015-Excellent Energy Efficient Unit Award
- 2014- Energy Efficient Unit Award
- 2012- Energy Efficient Unit Award

BEE-National Energy Conservation Award

- 2023- '3rd Prize' in Automobile Manufacturing Category 2020- '2nd Prize' in Automobile Manufacturing Category 2017- '2nd Prize' in Automobile Manufacturing Category
- 2021-'2nd Prize' in CII Digital Transformation Meet 2020 -'1st Prize' in CII Digital Transformation Meet 2018- '2nd Prize' in CII Digital

CII-Digital Transformation

Meet

Transformation Meet

Uttar Pradesh State Energy Conservation Award

2021-'1st Runner-Up Prize'-State Energy Conservation Award 2020-'1st Runner-Up Prize'-State Energy Conservation Award 2018-'1st Prize'-State Energy Conservation Award

2017-'1st Runner-Up Prize'-State

- Energy Conservation Award
- 2016-'1st Prize'-State Energy
 - **Conservation Award**

Certifications

- ISO 50001:2018
- ISO 45001:2018
- ISO 14001:2015
- IATF 16949:2016
- CII-Water Positive Plant-2022
- CII-Environmental Best Practices

Award

TATA MOTORS Connecting Aspirations

Thank you

Copyright, Confidential, Tata Motors Limited